

Is PTCy the standard GvHD prophylaxis for haplo-HSCT in 2023? NO

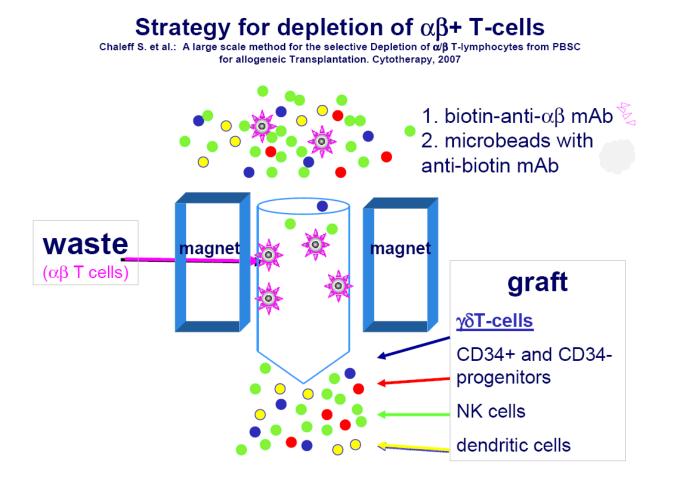
Mauro Di Ianni

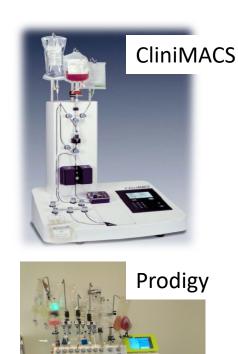
Nothing to Disclose

T-cell replete HSCT: GvHD and relapse

	Re	lapse (%)	DFS (%) GvH	ID %(grade II-IV)
Luznik et al. BBMT 2008	NMA/PTCY Haplo	51	42	34
Bashey et al J Clin Oncol 2013	MA/PTCy -Haplo	33	60	33
McCurdy et al. BBMT 2015	MA/PTCy -Haplo	21 LR 48 IR 67 HR		

Ex vivo T cell depletion


- non-selective
 - all T-cells are removed
 - SBA/ E_N
 - HSC specific monoclonal antibodies in conjunction with magnetic beads: positive selection of CD34+ cells


- Selective
 - only a given T-cell subset is targeted
 - Removal of $\alpha\beta$ T-cells
 - Removal of naive T-cells (CD45RA T-cell subset)
 - Tregs selection

Rationale

4. Rationale

- Efficient TCR α/β^+ cell depletion
 - \rightarrow Potentially reducing the risk of GvHD
 - \rightarrow Reducing the need for strong pharmaceutical immunosuppression
 - \rightarrow A basis for enhanced immune reconstitution and GvL effects
- Maintenance of stem cells and facilitating cells, such as NK cells and TCR γ/δ^+ T cells
 - \rightarrow Facilitate engraftment
 - \rightarrow Drive immune reconstitution
 - \rightarrow Exert GvL effects
 - \rightarrow Reduce risk for infections

Efficient TCR α/β + cell depletion

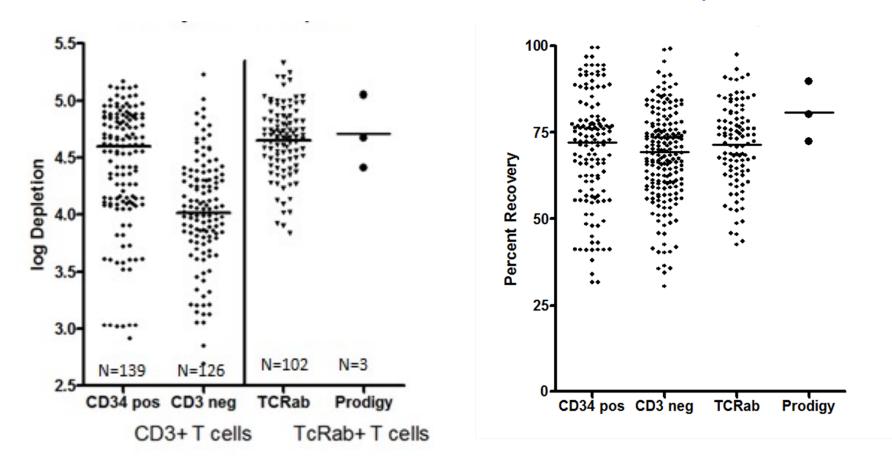
 \rightarrow Potentially reducing the risk of GvHD

Maintenance of stem cells and facilitating cells (TCRγδ T cells, NK cells)

 \rightarrow might facilitate engraftment,

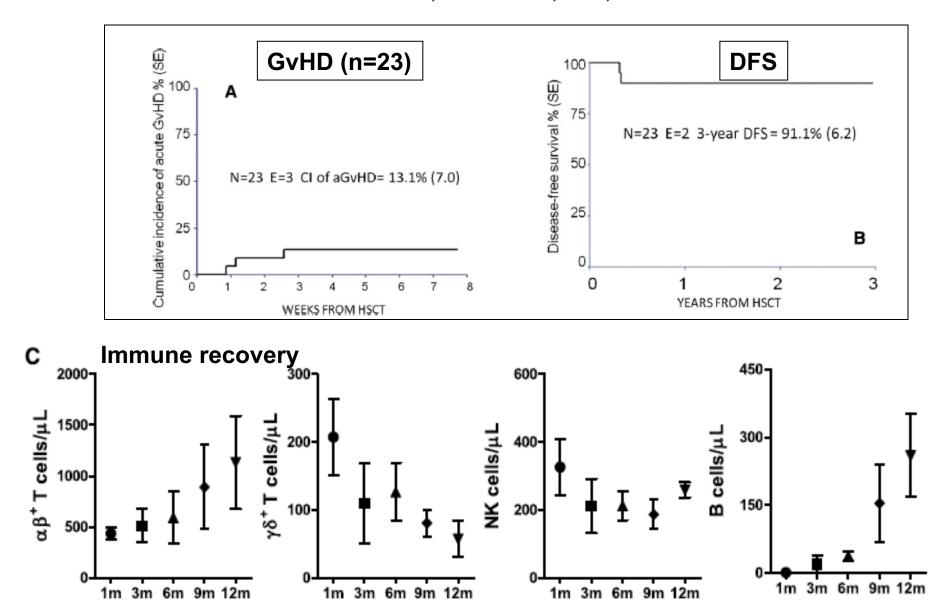
 \rightarrow exerts a GvL effect and reduces the risk for infections.

Performance 3. High log depletion **4.8** : TCR α / β log depletion Stable performance ! CD34 CD133 TCR $\alpha/\beta/CD19$ CD3/CD19 depletion enrichment enrichment depletion 4.6 - 5.1* 3.8 - 4.2* 3.0 - 4.1* 4.8 ± 0.3** Median T cell log depl. (range: 4.3 – 5.1) Median B cell 3.2 - 3.7* 3.1* 2.2 - 3.7* 3.5 ± 0.1*** log depl. (range: 3.4 – 3.6)


* Median depletion results from different publications

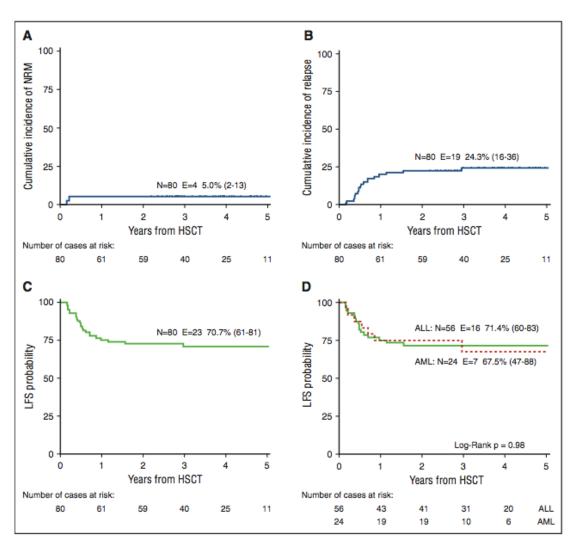
** TCRα/β log depl.; n=6; In-house project 2; (mean ± SD)

*** Combined TCR α/β /CD19 depl.; n=3; In-house project 2; (mean ± SD)

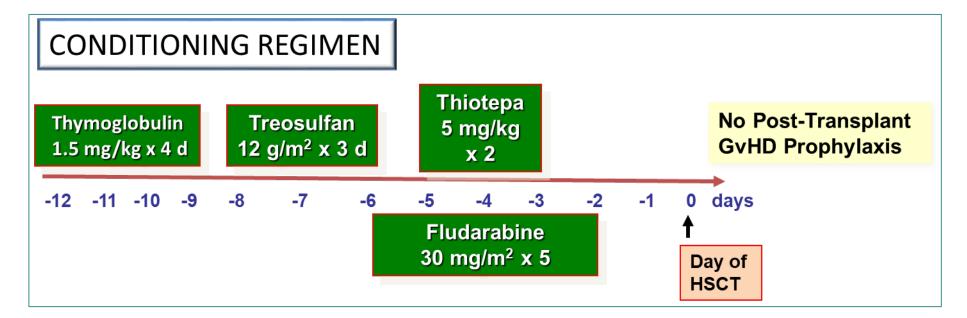

TcRαβ-Depletion

Log Depletion

CD34+ Recovery


HLA-haploidentical stem cell transplantation after removal of αβ+ T and B cells in children with nonmalignant disorders Bertaina A et al., Blood 124; 822, 2014.

Outcome of children with acute leukemia given HLA-haploidentical HSCT after $\alpha\beta$ T-cell and B-cell depletion


PTS = 80 Median age (range) 9.7 (0.9-20.9) 56 ALL - 24 AML

GvHD grade 1-2 : 30% (skin only)

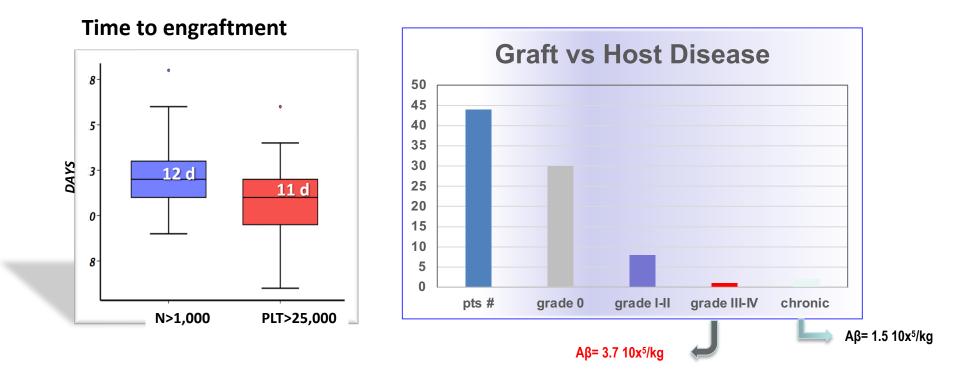
TcRαβ / CD19 depleted HaploHSCT in adults

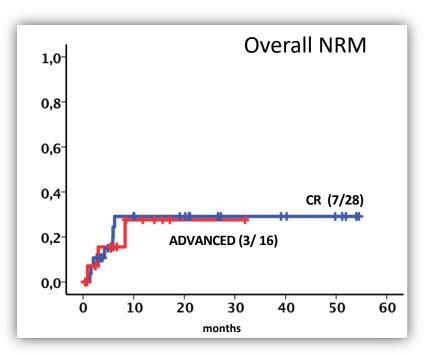
The experience of the BMT Unit of the University of Parma, Italy

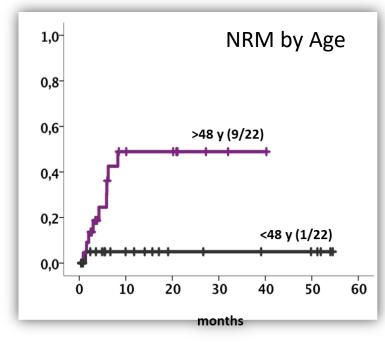
GRAFT COMPOSITION

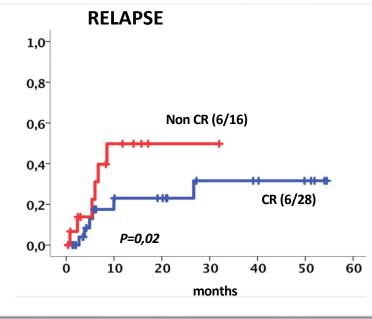
	CD34		CD3	CD20	NK	
		Total CD3	γδ	αβ		
cells/kg Median	11 x 10 ⁶	4.3 x 10 ⁶	4 x 10 ⁶	4,8 x 10 ⁴	4.8 x 10 ⁴	30 x 10 ⁶
(Range)	(5-19)	(1-35.7)	(1-34)	(0,4-37)	(1.8-32)	(8-91) ISCT Program

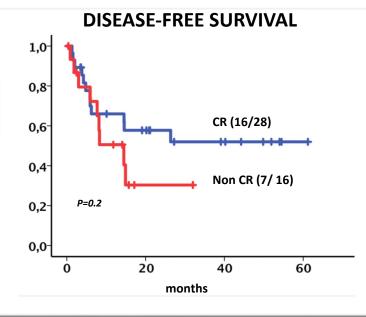
University of Parma


Patients Mole (Female	44	
Male/Female	23/21	
Age in years		
Median (range)	48 (19-73)	
Age, groups	00	
19 - 50 51 - 60	23 7	
61 - 73	14	
01-73	14	
Disease		
AML	31	
ALL	6	
HL	6	
MM	1	
Disease Status At		
Transplant	16	
CR1	12	
CR ≥2	16	
RELAPSE		
CMV status (R/D)		
NEG/NEG	3	
NEG/POS	8	
	27	
POS/NEG	6	


Panel of donors	
Mother	6
son	7
daughter	9
brother or sister	14
cousin	6
nephew	1
uncle	1


Courtesy of Lucia Prezioso, Parma


patient and donor characteristics


Engraftment	
Primary sustained engraftment	42/44
Overall engraftment	44/44

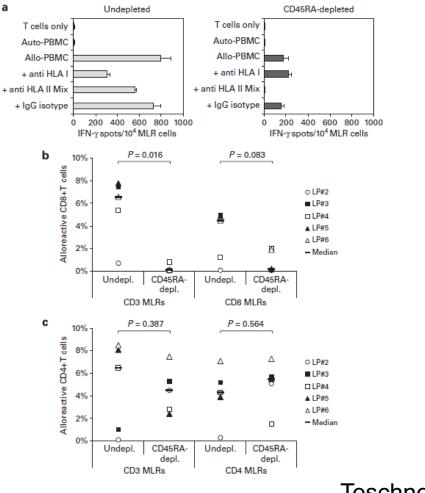
HSCT Program University of Parma

Tαβ/CD19-depletion in adults: Comments

- High engraftment rates after a chemotherapy alone based conditioning
- Low incidence and severity of GvHD
 - $\alpha\beta$ T cell threshold <10⁵/kg
 - Skin limited GvHD
- Fast immune reconstitution
- Very low infectious complications
- No benefit in advanced disease status at transplant

Ex vivo T cell depletion

- non-selective
 - all T-cells are removed
 - SBA/ E_N
 - HSC specific monoclonal antibodies in conjunction with magnetic beads: positive selection of CD34+ cells


- Selective
 - only a given T-cell subset is targeted
 - Removal of $\alpha\beta$ T-cells
 - Removal of naive T-cells (CD45RA T-cell subset)
 - Tregs selection

Undeplete	d LPs												
Donor	CD3 ^{pos}	CD3/ CD4 ^{pos}	CD3/CD4/ CD45RA ^{pos}	CD3/CD4 ^{pos} CD45RA ^{neg}	CD3/ CD8 ^{pos}	CD3/CD8/ CD45RA ^{pos}	CD3/CD8 ^{pos} CD45RA ^{neg}	Log depletion	CD4/CD25/ Foxp3 ^{pos}	CD3 ^{neg} CD16/ CD56 ^{pos}	CD19 ^{pos}	CD14 ^{pos}	CD15 ^{pos}
1	6503 (54.9)	4608 (38.9)	1611 (13.6)	2676 (21.8)	1374 (11.6)	537 (4.5)	817 (6.2)	NA	213 (1.8) ^a	NA	NA	NA	NA
2	4461 (40.8)	2941 (26.9)	1268 (11.6)	1585 (14.5)	1400 (12.8)	875 (8.0)	525 (4.8)	NA	197 (1.8) ^a	2810 (25.7)	809 (7.4)	2919 (26.7)	1082 (9.9)
3	6533 (63.9)	3323 (32.5)	1748 (17.1)	1636 (16.0)	2730 (26.7)	1774 (17.4)	951 (9.0)	NA	184 (1.8) ^a	1051 (10.3)	532 (5.2)	1462 (14.3)	90 (0.9)
4	5360 (39.7)	3132 (23.2)	1283 (9.5)	1850 (13.7)	2174 (16.1)	1229 (9.1)	797 (5.9)	NA	230 (1.7) ^a	2923 (21.7)	1715 (12.7)	2619 (19.4)	2336 (17.
5	4261 (51.2)	2979 (35.8)	1373 (16.5)	1515 (18.2)	1148 (13.8)	543 (6.5)	531 (6.4)	NA	191 (2.3) ^a	907 (10.9)	599 (7.2)	1831 (22.0)	358 (4.3)
6	5845 (55.2)	3971 (37.5)	1874 (17.7)	2011 (19.0)	1758 (16.6)	1113 (10.5)	566 (5.4)	NA	244 (2.3) ^a	2034 (19.2)	678 (6.4)	1726 (16.3)	286 (2.7
Median	5603 (53.1)	3228 (34.2)	1492 (15.1)	1743 (17.1)	1579 (15.9)	994 (8.6)	682 (6.0)	NA	205 (1.8) ^a	2034 (19.2)	678 (7.2)	1831 (19.4)	358 (4.3)
CD45RA-d	epleted LPs												
1	1472 (52.0)	1245 (44.0)	0 (0.0)	1211 (42.8)	175 (6.2)	3 (0.1)	167 (5.9)	4.4	40 (1.4) ^a	NA	NA	NA	NA
2	1198 (28.2)	983 (23.1)	0 (0.0)	954 (22.4)	217 (5.1)	0 (0.0)	204 (4.8)	4.3	60 (1.4) ^a	760 (18.9)	0 (0.0)	1898 (44.6)	891 (20.9
3	1414 (57.8)	1168 (47.7)	2 (0.1)	1055 (43.1)	233 (9.5)	2 (0.1)	186 (7.6)	4.7	24 (1.0) ^a	56 (2.3)	0 (0.0)	602 (24.6)	93 (3.8)
4	1429 (33.8)	1181 (26.6)	9 (0.2)	1119 (25.2)	244 (5.5)	9 (0.2)	233 (5.5)	3.4	49 (1.1) ^a	1211 (28.6)	0 (0.0)	875 (19.7)	1816 (40.
5	1219 (45.6)	1080 (40.4)	3 (0.1)	1015 (38.0)	142 (5.3)	3 (0.1)	120 (4.5)	4.7	59 (2.2) ^a	88 (3.3)	3 (0.1)	871 (32.6)	91 (3.4
6	972 (50.9)	836 (43.8)	2 (0.1)	815 (42.7)	109 (5.7)	0 (0.0)	84 (4.4)	NA	23 (1.2) ^a	131 (6.9)	2 (0.1)	517 (27.1)	134 (7.0
Median	1317 (48.3)	1124 (42.1)	2 (0.1)	1035 (40.4)	196 (5.6)	3 (0.1)	177 (4.8)	4.4	45 (1.3) ^a	131 (6.9)	0 (0.0)	871 (27.1)	134 (7.0

Teschner et al., BMT 2013

Alloreactivity of CD45RA depleted vs undepleted cell fraction

а

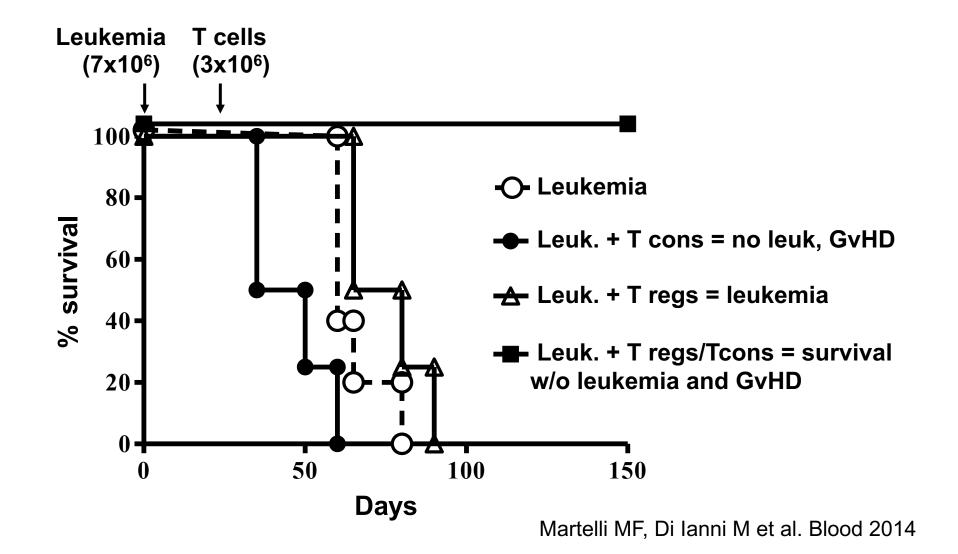
Teschner et al., BMT 2013

CD45RA depleted graft

Graft	
CD34⁺ cells	
Median (cells/kg × 10 ⁶)	7.4
Range (cells/kg × 10 ⁶)	5.1-19.9
CD3⁺ cells	
Median (cells/kg × 10 ⁶)	10
Range (cells/kg × 10 ^₅)	1.6-10.0
CD45RA⁺ CD45RO⁻ CD3⁺ cells	
Median (cells/kg × 10 ⁴)	0.36
Range (cells/kg × 10 ⁴)	0.05-7.46
Interquartile range	0.22-0.65

Bleakley et al., JCI 2015

Clinical trials with CD45RA T-cell depletion


Patients	Disease	GvHD prophylaxis	Acute/Chronic GVHD	TRM	EFS (DFS)/OS	Reference
35	HR-AL	Tacrolimus	66%/9%	9%	70%/78%/2 years	Bleakley et al., JCI 2015
8	Solid Tumors	Sirolimus	0%	1 patient died	NA	Roy et al., Blood 2016
17	Haematological malignancies	Sirolimus and MMF	17,6%/6%	11,7%	76,5% patients alive at 223 days	Triplett et al., BMT 2015

Ex vivo T cell depletion

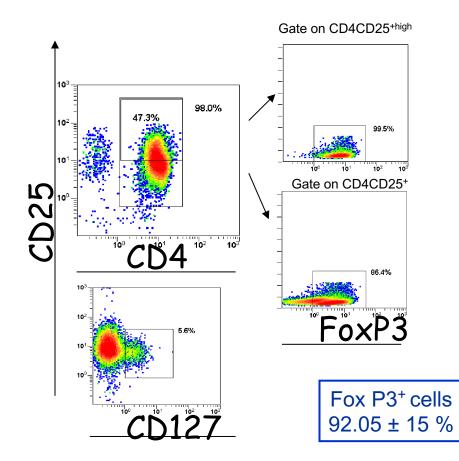
- non-selective
 - all T-cells are removed
 - SBA/ E_N
 - HSC specific monoclonal antibodies in conjunction with magnetic beads: positive selection of CD34+ cells

- Selective
 - only a given T-cell subset is targeted
 - Removal of $\alpha\beta$ T-cells
 - Removal of naive T-cells (CD45RA T-cell subset)
 - Tregs selection

Clearance of human AML by human T regs + T cons in immunodeficient mice

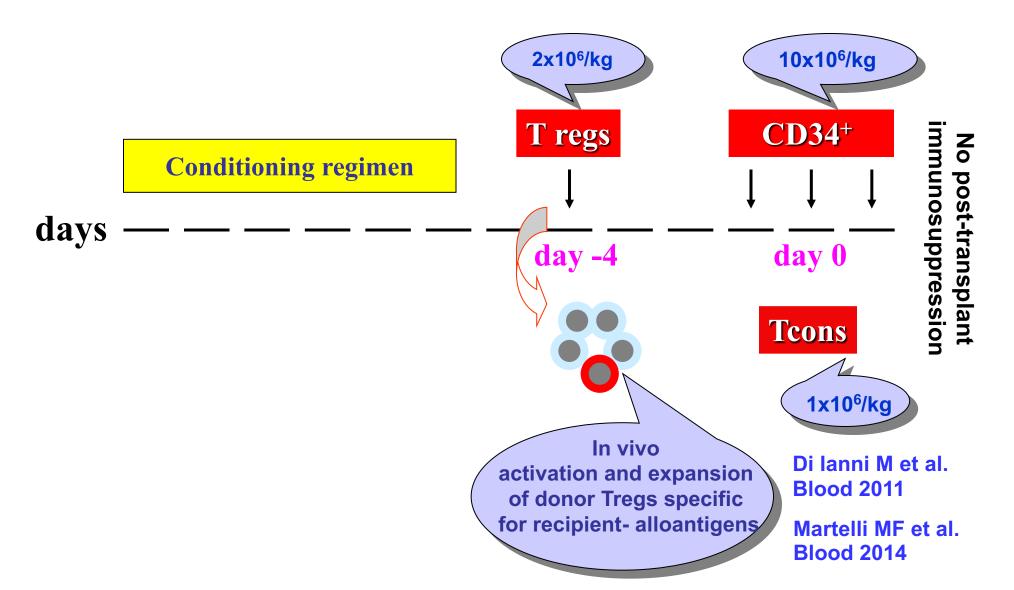
Selection and Characterization of CD4+CD25+ Regulatory T Cells

Leukapheresis product



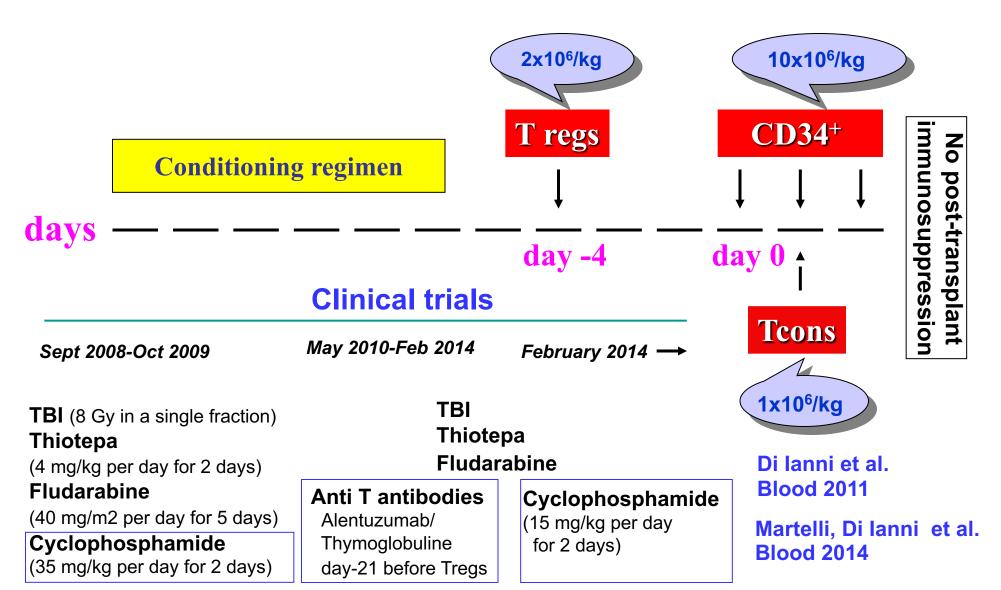
1st step: Depletion of CD8⁺/CD19⁺cells

2ndstep: Enrichment of CD25⁺ cells

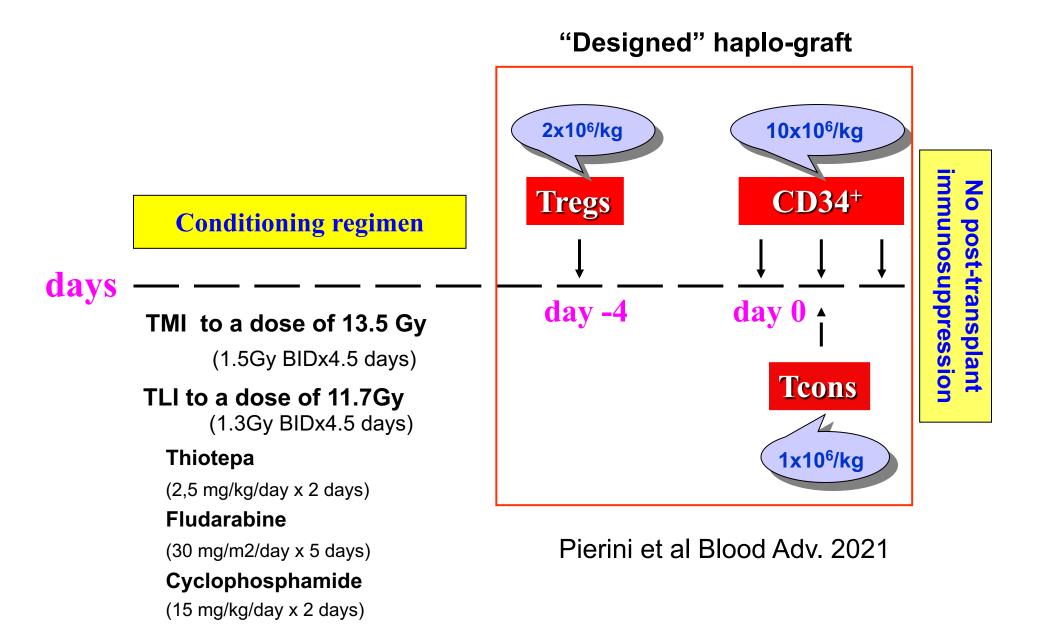


s	tarting fraction	Final fraction
Cells (x10 ⁹)	1060 (540-1370)	280 (202- 390)
%CD4CD25	3.0 (1.5-7.45)	92.4 (90-97.1)
N° cells (x 10 ⁶)	330 (221-1020)	256 (185.6-365.4)
%CD4CD25 ^{high}	0.3 (0.12- 0.89)	33.6 (14.4-39.6)
N° cells (x 10 ⁶)	36.12 (19.98 - 84)	68.6 (20.9-143)

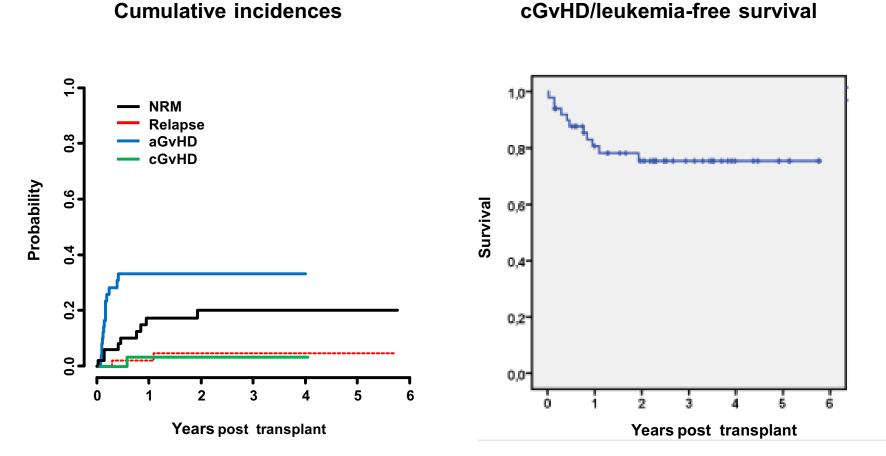
Di Ianni et al., Exp. Hematology 2008 Di Ianni et al., Clinical and Exp Immunology 2009 Di Ianni et al., Blood 2011 Di Ianni et al., Best Prac Res Clin Haematol 2011 Di Ianni et al., Transfusion Apheresis Science 2012


Treg and Tcon adoptive immunotherapy in haplo HSCT for patients with high risk AL

Conditioning Regimen and Inoculum

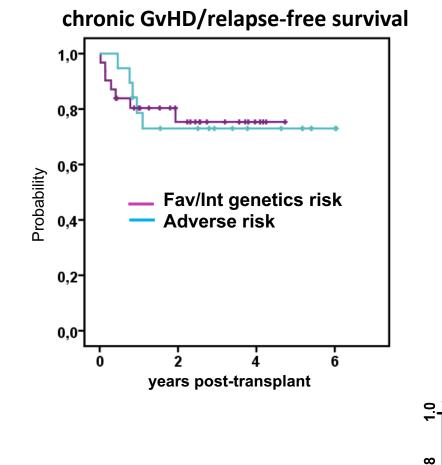


Treg and Tcon adoptive immunotherapy in haplo-HSCT for patients with high risk AL


Conditioning Regimen and Inoculum

Haplo-HSCT for the elderly with high risk AML

Outcome of high-risk AML patients after haploidentical tranplantation with adoptive Tcon and Treg immunotherapy and irradiation-based myeloablative conditioning ragimen


50 high risk AML patients, median age: 53 years,

31 TMLI-based conditioning, 9 sTBI-based conditioning, 10 fTBI-based conditioning

Pierini et al., Blood Adv 2021

Impact of Adverse Genetics

Adverse genetics at diagnosis (including monosomal and/or complex karyotype) had no impact on chronic GvHD/relapse-free survival

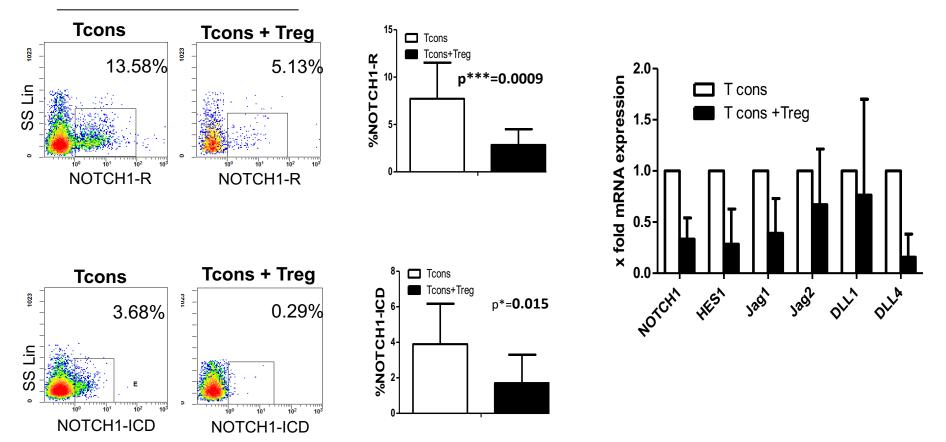
Mechanisms underlying Treg suppression of GvHD with no loss of GvL activity

Alloantigen specific Tcon activation (not expansion) triggers GvL activity

Edinger M et al. Nature Medicine 2003

In animal models

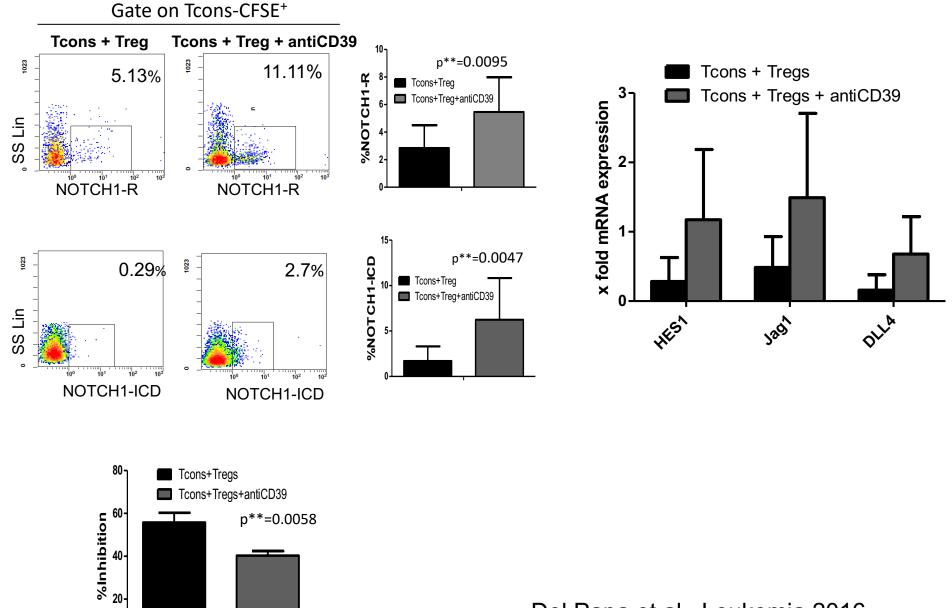
- Tregs inhibited early expansion of alloreactive donor T cells in lymphoid organs and their capacity to induce GVHD
- Tregs did not inhibit co-transplanted Tcon activation and cytotoxic functions against leukemia and lymphoma cell lines. Thus Tcons conserve their capacity to kill tumor cells.


Mechanisms underlying Treg suppression of GvHD with no loss of GvL

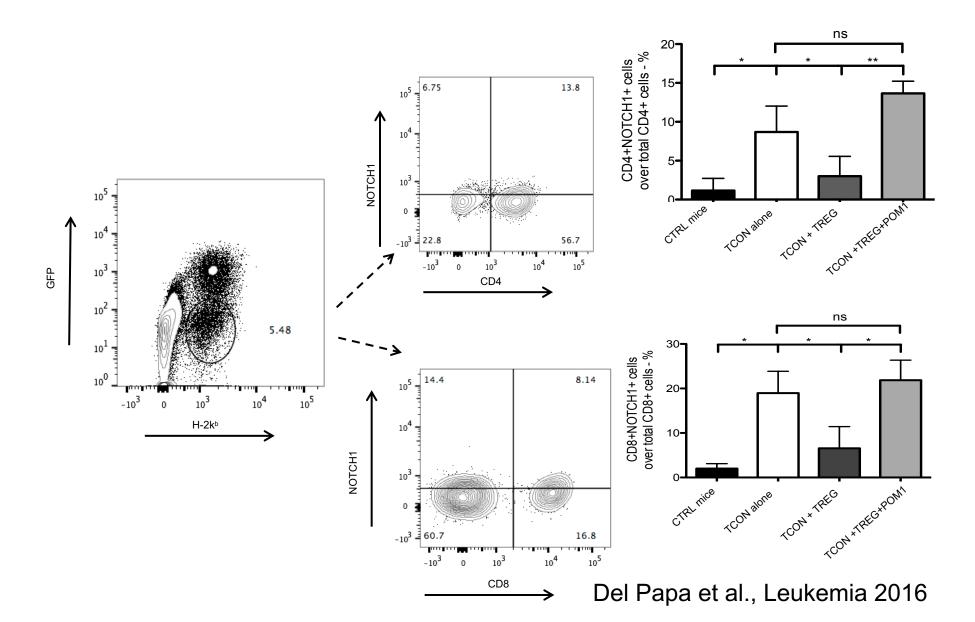
Working hypothesis in clinical haplo-HSCT

- NOTCH1 inhibition

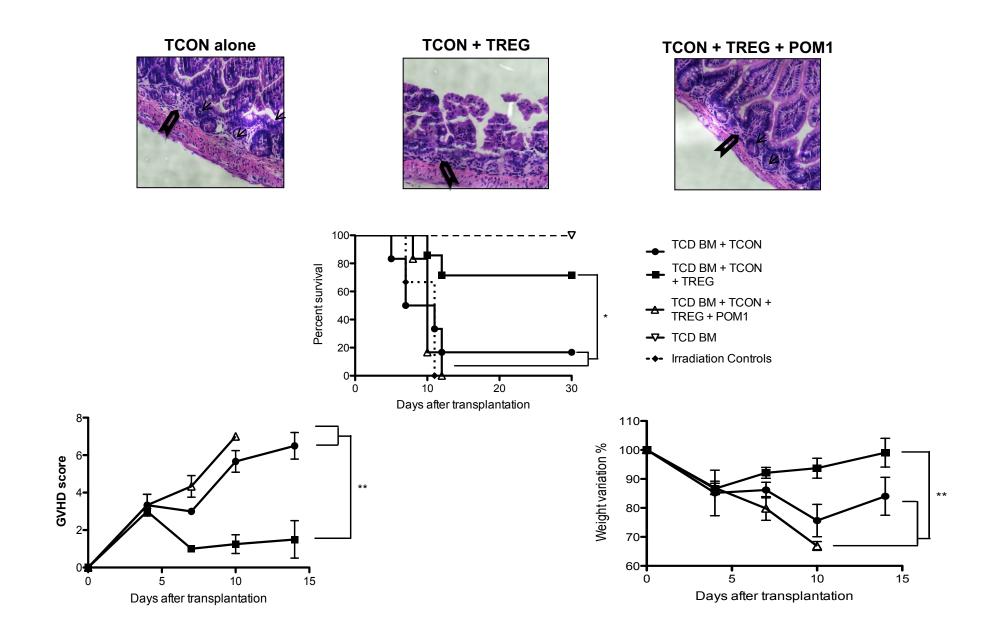
-A pro-inflammatory environment in the BM of Treg transplanted patients


NOTCH1 signalling is down-regulated in Tcons in presence of Tregs: a new major regulator of alloreactivity and tolerance

Gate on Tcons-CFSE⁺


Del Papa et al., Leukemia, 2016

Adding anti-CD39 rescued NOTCH1 signalling

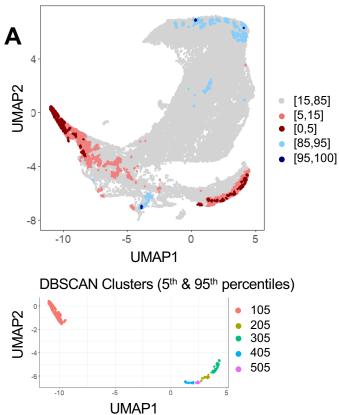


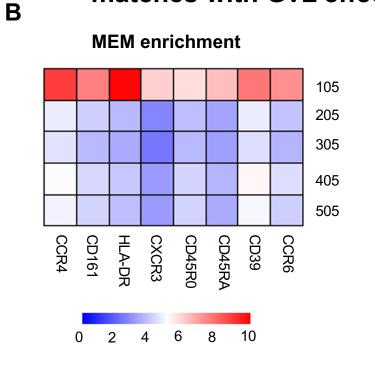
Del Papa et al., Leukemia 2016

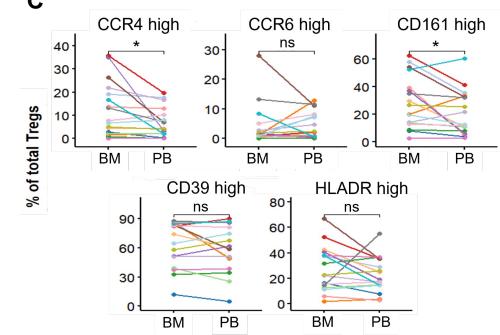
Treg prevent NOTCH1 upregulation in TCON after transplantation through a CD39 dependent mechanism

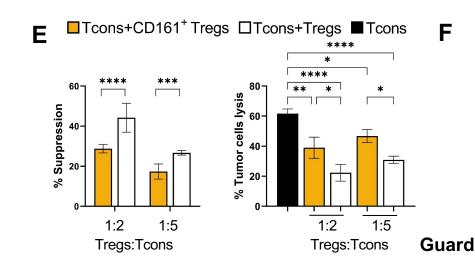
Treg prevent NOTCH1 upregulation in TCON after transplantation through a CD39 dependent mechanism

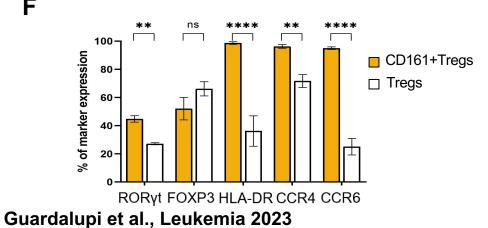
Mechanisms underlying Treg suppression of GvHD with no loss of GvL


Working hypothesis in clinical haplo-HSCT


- NOTCH1 inhibition


-A pro-inflammatory environment in the BM of Treg transplanted patients


Treg CD161+ is as new marrow pro-inflammatory population that


matches with GvL effect



D Untreated IL-6+TGF- β IL-6 TGF- β

Tregs in haploidentical BMT: how to proceed to standardize?

Naturally occurring Tregs

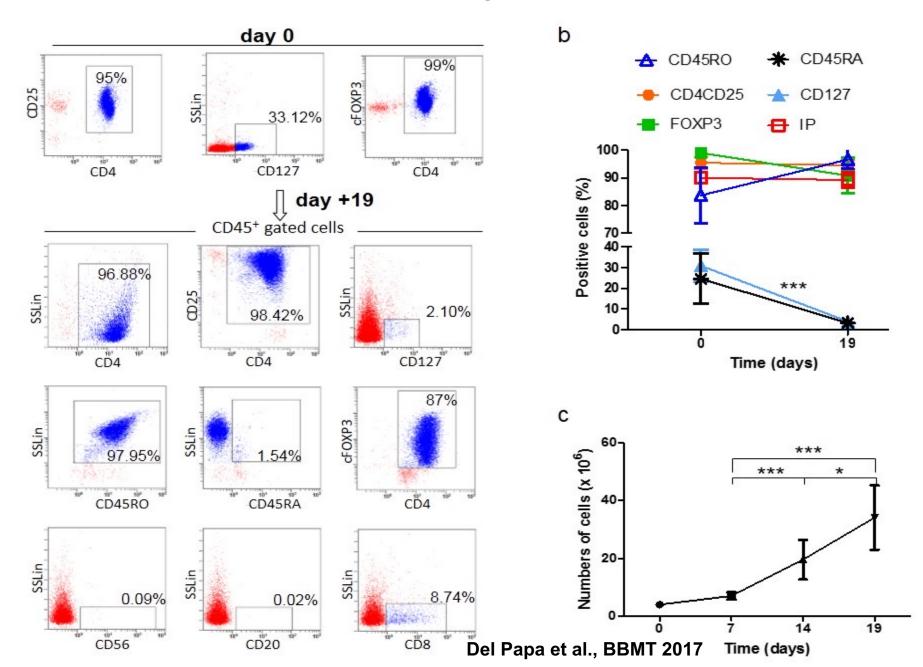
Pros: Easy purification from a leukapheretic product using a fully automated immunomagnetic procedure

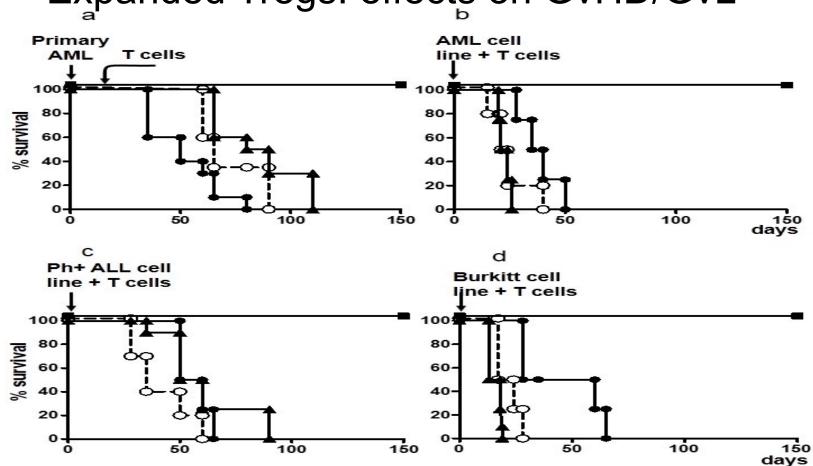
Cons: Relatively low number of Tregs (2-3 x10⁶/Kg) can be collected from a donor

Treg in vitro activation

Pros: IL-2/TNF- α priming enhances Treg suppressive function and improves Treg gut homing for better GvHD prevention.

Cons: Studies are needed to assess whether IL-2/TNF- α priming can be used to safely infuse higher number of Tcons


Ex vivo expanded Tregs


Pros: Feasibility of present technology to produce large numbers of cGMPgrade Tregs. For instance, a "designed" graft could easily include 1x10⁷/Kg Tregs and 0.5x10⁷/Kg Tcons

Cons: Requirement of GMP manufacture which is expensive, not always available and requires expert, dedicated laboratory staff

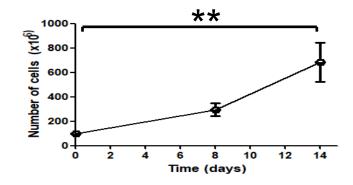
Expanded non automated Tregs are FoxP3⁺ and CD127⁻

а

Expanded Tregs: effects on GvHD/GvL

Del Papa et al., BBMT 2017

Tregs expansion through CliniMacs Prodigy Technology



Tregs are polyclonally activated with colloidal polymeric nanomatrix covalently attached to humanized recombinant agonists against human CD3 and CD28 and cultured for up to 14 days in presence of Rapamycine (100 nm/ml) and IL-2 (1000 U/ml)

-Leukapheresis product

-CD8-CD19neg/CD25pos selection by CliniMacs

-100x10⁶ immunoselected Tregs as starting fraction

Ulbar et al., BBMT 2020

Cellular therapies: next steps

- Haplo-Treg for AML; gamma-delta option
- For ALL?
- Treg/Tcon HSCT could serve as a platform to allow for further post-transplant immunotherapy such as donor CAR-NK cells to cure refractory lymphoid malignancies
- immunotherapies that engage natural killer (NK) cells are particularly intriguing as NK cells are expected not to cause GvHD (Ruggeri et al., Science 2002)
- we hypothesize donor NK cells that have been engineered to express a CAR directed against CD19 combined with Treg/Tcon HSCT may represent a powerful tool against relapsed/refractory lymphoid malignancies such as ALL without causing GvHD
- As already showed (Liu et al., NEJM 2020) CAR-NK may found a place in any malignant cancer CD19 positive outside of the transplantation procedure